A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering

نویسندگان

  • Yingtong Zhang
  • Eusebio Navarro
  • José T. Cánovas-Márquez
  • Lorena Almagro
  • Haiqin Chen
  • Yong Q. Chen
  • Hao Zhang
  • Santiago Torres-Martínez
  • Wei Chen
  • Victoriano Garre
چکیده

BACKGROUND Carotenoids are natural pigments with antioxidant properties that have important functions in human physiology and must be supplied through the diet. They also have important industrial applications as food colourants, animal feed additives and nutraceuticals. Some of them, such as β-carotene, are produced on an industrial scale with the use of microorganisms, including fungi. The mucoral Blakeslea trispora is used by the industry to produce β-carotene, although optimisation of production by molecular genetic engineering is unfeasible. However, the phylogenetically closely related Mucor circinelloides, which is also able to accumulate β-carotene, possesses a vast collection of genetic tools with which to manipulate its genome. RESULTS This work combines classical forward and modern reverse genetic techniques to deepen the regulation of carotenoid synthesis and generate candidate strains for biotechnological production of β-carotene. Mutagenesis followed by screening for mutants with altered colour in the dark and/or in light led to the isolation of 26 mutants that, together with eight previously isolated mutants, have been analysed in this work. Although most of the mutants harboured mutations in known structural and regulatory carotenogenic genes, eight of them lacked mutations in those genes. Whole-genome sequencing of six of these strains revealed the presence of many mutations throughout their genomes, which makes identification of the mutation that produced the phenotype difficult. However, deletion of the crgA gene, a well-known repressor of carotenoid biosynthesis in M. circinelloides, in two mutants (MU206 and MU218) with high levels of β-carotene resulted in a further increase in β-carotene content to differing extents with respect to the crgA single-null strain; in particular, one strain derived from MU218 was able to accumulate up to 4 mg/g of β-carotene. The additive effect of crgA deletion and the mutations present in MU218 suggests the existence of a previously unknown regulatory mechanism that represses carotenoid biosynthesis independently and in parallel to crgA. CONCLUSIONS The use of a mucoral model such as M. circinelloides can allow the identification of the regulatory mechanisms that control carotenoid biosynthesis, which can then be manipulated to generate tailored strains of biotechnological interest. Mutants in the repressor crgA and in the newly identified regulatory mechanism generated in this work accumulate high levels of β-carotene and are candidates for further improvements in biotechnological β-carotene production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

expression of a bacterial β-carotene hydroxylase in canthaxanthin producing mutant Mucor circinelloides strains

Xanthophylls, primarily hydroxyland keto-derivatives of β-carotene (such as zeaxanthin, β-cryptoxanthin, canthaxanthin, echinenone and astaxanthin) have powerful antioxidant activity. Due to several positive effects on human and animal health, industrial application of xanthophylls shows an increasing tendency. In our previous study, carotenoid biosynthesis of the β-carotene producing zygomycet...

متن کامل

The biosorption of Congo red azo dye by fungus Mucor circinelloides and its application in the decolorization of textile industry wastewater

The extensive application of dyes in the textile industries and their discharge in the wastewaters leads to numerous environmental pollutions; therefore, treating these wastewaters by efficient and eco-friendly methods is a necessity. In this study, potent strains were isolated by the enrichment technique according to their maximum dye sorption at the lowest possible time at 500nm. Consequently...

متن کامل

Stress Responses of Genetically Modified Mucor Circinelloides Strains

The stress-related responses of Mucor circinelloides transformants altered in carotenoid production have been investigated. In zygomycetous fungi β-carotene is the predominant carotenoid, however, in transformants containing the crtW and crtZ astaxanthin biosynthesis genes from Agrobacterium aurantiacum new carotenoid compounds are present. Mucor strains with altered carotenoid content were tre...

متن کامل

Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11

The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative b...

متن کامل

Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales Mucor circinelloides

Mucor circinelloides is a human pathogen, biofuel producer, and model system that belongs to a basal fungal lineage; however, the genetics of this fungus are limited. In contrast to ascomycetes and basidiomycetes, basal fungal lineages have been understudied. This may be caused by a lack of attention given to these fungi, as well as limited tools for genetic analysis. Nonetheless, the importanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016